Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Cold-season precipitation statistics in simulations from the storm-resolving WRF Model at 6-km and 1-h resolution over western North America are analyzed. Pseudo–global warming future simulations for the 2041–80 period, constrained by GCMs under the RCP8.5 scenario, are compared to the 1981–2020 historical simulation. The analysis focuses on the dynamical properties of precipitation time series at subdaily scales and on the morphology of storms. The statistical distribution of precipitation intensities in each pixel of the simulation domain is characterized through nonparametric statistical indicators: frequency of wet hours, mean wet-hour precipitation intensity, and Gini coefficient as a measure of the temporal concentration of the precipitation volume. Additionally, the temporal and spatial Fourier power spectra of precipitation time series and precipitation fields are analyzed. The half-power period (HPP) and half-power wavelength (HPW) are defined as spectral measures of the characteristic scales of precipitation’s temporal and spatial patterns. The results show statistically significant increases in the mean wet-hour precipitation intensity and in the Gini coefficient in 99% of the pixels, indicating that the seasonal precipitation volume becomes more concentrated within a smaller number of hours with higher precipitation intensity. The statistics of change in the frequency of wet hours are more contrasted across the simulation domain. The changes are also reflected in the power spectra, which show the spatial and temporal variability increasing proportionally more with finer spatial and temporal scales and the HPW and HPP decreasing. These projected changes are expected to have consequences, not only in terms of hydrologic impacts but also in terms of the predictability of precipitation patterns. Significance StatementThe precipitation characteristics of winter storms over the western United States and southwestern Canada are analyzed in future climate simulations for the 2041–80 period. As compared to present-day climate, the most intense parts of the storms are projected to produce a higher rainfall volume, with increased concentration over smaller areas and shorter time intervals. The propensity of rainfall intensity to vary rapidly over time will be enhanced in the future according to the simulations. These model predictions imply an increased risk of rapid flooding in small basins. They also suggest that predicting several hours ahead the time and location at which a storm will produce maximum rainfall may become more challenging in the future.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Abstract Determining the key elements of interconnected infrastructure and complex systems is paramount to ensure system functionality and integrity. This work quantifies the dominance of the networks’ nodes in their respective neighborhoods, introducing a centrality metric, DomiRank, that integrates local and global topological information via a tunable parameter. We present an analytical formula and an efficient parallelizable algorithm for DomiRank centrality, making it applicable to massive networks. From the networks’ structure and function perspective, nodes with high values of DomiRank highlight fragile neighborhoods whose integrity and functionality are highly dependent on those dominant nodes. Underscoring this relation between dominance and fragility, we show that DomiRank systematically outperforms other centrality metrics in generating targeted attacks that effectively compromise network structure and disrupt its functionality for synthetic and real-world topologies. Moreover, we show that DomiRank-based attacks inflict more enduring damage in the network, hindering its ability to rebound and, thus, impairing system resilience. DomiRank centrality capitalizes on the competition mechanism embedded in its definition to expose the fragility of networks, paving the way to design strategies to mitigate vulnerability and enhance the resilience of critical infrastructures.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Abstract Observations of clouds and precipitation in the microwave domain from the active dual-frequency precipitation radar (DPR) and the passive Global Precipitation Measurement (GPM) Microwave Imager (GMI) onboard the GPMCore Observatorysatellite are used in synergy with cloud tracking information derived from infrared imagery from theGOES-13andMeteosat-7geostationary satellites for analysis of the life cycle of precipitating cloud systems, in terms of temporal evolution of their macrophysical characteristics, in several oceanic and continental regions of the tropics. The life cycle of each one of the several hundred thousand cloud systems tracked during the 2-yr (2015–16) analysis period is divided into five equal-duration stages between initiation and dissipation. The average cloud size, precipitation intensity, precipitation top height, and convective and stratiform precipitating fractions are documented at each stage of the life cycle for different cloud categories (based upon lifetime duration). The average life cycle dynamics is found remarkably homogeneous across the different regions and is consistent with previous studies: systems peak in size around midlife; precipitation intensity and convective fraction tend to decrease continuously from the initiation stage to the dissipation. Over the three continental regions, Amazonia (AMZ), central Africa (CAF), and Sahel (SAH), at the early stages of clouds’ life cycle, precipitation estimates from the passive GMI instrument are systematically found to be 15%–40% lower than active radar estimates. By highlighting stage-dependent biases in state-of-the-art passive microwave precipitation estimates over land, we demonstrate the potential usefulness of cloud tracking information for improving retrievals and suggest new directions for the synergistic use of geostationary and low-Earth-orbiting satellite observations.more » « less
- 
            Abstract Satellite precipitation retrieval is inherently an underdetermined inverse problem where additional physical constraints could substantially enhance accuracy. While previous studies have explored static (pixel‐based/spatial‐context‐based) environmental variables at discrete satellite observation times, their temporal dynamic information remains underutilized. Building on our earlier finding that retrieval errors depend on storm progression (event stage), we propose a new, physically interpretable mechanism for improving retrievals, namely, leveraging environmental variables' temporal dynamics as proxies for event stages. Using IMERG satellite product and GV‐MRMS as ground‐truth over CONUS (2018–2020), we first demonstrate robust coevolution patterns of environmental variables and satellite errors throughout events, and show that these variables' temporal gradients reliably infer event stages. We then demonstrate that incorporating these variables and their gradients into a machine‐learning post‐processing framework improves retrieval accuracy. This work inspires and guides more thorough utilization of spatiotemporal atmospheric fields encoding rich physical information within advanced machine‐learning frameworks for further algorithm improvement.more » « less
- 
            Abstract Extreme floods and landslides in high‐latitude watersheds have been associated with rain‐on‐snow (ROS) events. Yet, the risks of changing precipitation phases on a declining snowpack under a warming climate remain unclear. Normalizing the total annual duration of ROS with that of the seasonal snowpack, the ERA5 data (1941–2023) show that the frequency of high‐runoff ROS events is a characteristic feature of high‐latitude coastal zones, particularly over the coasts of south‐central Alaska and southern Newfoundland. Total rainfall accumulation per seasonal snowpack duration has increased across western mountain ranges, with the Olympic Mountains experiencing more than 40 mm of additional rainfall over the snowpack in the past eight decades, followed by the Sierra Nevada. These trends could drive an 8% increase in rainfall extremes (e.g., more than 10 mm for 6 hr storm with a 15‐year return period), highlighting the need for resilient flood control systems in high‐latitude coastal cities.more » « less
- 
            Abstract Wildland fire–atmosphere interaction generates complex turbulence patterns, organized across multiple scales, which inform fire-spread behaviour, firebrand transport, and smoke dispersion. Here, we utilize wavelet-based techniques to explore the characteristic temporal scales associated with coherent patterns in the measured temperature and the turbulent fluxes during a prescribed wind-driven (heading) surface fire beneath a forest canopy. We use temperature and velocity measurements from tower-mounted sonic anemometers at multiple heights. Patterns in the wavelet-based energy density of the measured temperature plotted on a time–frequency plane indicate the presence of fire-modulated ramp–cliff structures in the low-to-mid-frequency band (0.01–0.33 Hz), with mean ramp durations approximately 20% shorter and ramp slopes that are an order of magnitude higher compared to no-fire conditions. We then investigate heat- and momentum-flux events near the canopy top through a cross-wavelet coherence analysis. Briefly before the fire-front arrives at the tower base, momentum-flux events are relatively suppressed and turbulent fluxes are chiefly thermally-driven near the canopy top, owing to the tilting of the flame in the direction of the wind. Fire-induced heat-flux events comprising warm updrafts and cool downdrafts are coherent down to periods of a second, whereas ambient heat-flux events operate mainly at higher periods (above 17 s). Later, when the strongest temperature fluctuations are recorded near the surface, fire-induced heat-flux events occur intermittently at shorter scales and cool sweeps start being seen for periods ranging from 8 to 35 s near the canopy top, suggesting a diminishing influence of the flame and increasing background atmospheric variability thereat. The improved understanding of the characteristic time scales associated with fire-induced turbulence features, as the fire-front evolves, will help develop more reliable fire behaviour and scalar transport models.more » « less
- 
            Abstract. In the western United States, prolonged drought, a warming climate, and historical fuel buildup have contributed to larger and more intense wildfires as well as to longer fire seasons. As these costly wildfires become more common, new tools and methods are essential for improving our understanding of the evolution of fires and how extreme weather conditions, including heat waves, windstorms, droughts, and varying levels of active-fire suppression, influence fire spread. Here, we develop the Geostationary Operational Environmental Satellites (GOES)-Observed Fire Event Representation (GOFER) algorithm to derive the hourly fire progression of large wildfires and create a product of hourly fire perimeters, active-fire lines, and fire spread rates. Using GOES-East and GOES-West geostationary satellite detections of active fires, we test the GOFER algorithm on 28 large wildfires in California from 2019 to 2021. The GOFER algorithm includes parameter optimizations for defining the burned-to-unburned boundary and correcting for the parallax effect from elevated terrain. We evaluate GOFER perimeters using 12 h data from the Visible Infrared Imaging Radiometer Suite (VIIRS)-derived Fire Event Data Suite (FEDS) and final fire perimeters from the California's Fire and Resource Assessment Program (FRAP). Although the GOES imagery used to derive GOFER has a coarser resolution (2 km at the Equator), the final fire perimeters from GOFER correspond reasonably well to those obtained from FRAP, with a mean Intersection-over-Union (IoU) of 0.77, in comparison to 0.83 between FEDS and FRAP; the IoU indicates the area of overlap over the area of the union relative to the reference perimeters, in which 0 is no agreement and 1 is perfect agreement. GOFER fills a key temporal gap present in other fire tracking products that rely on low-Earth-orbit imagery, where perimeters are available at intervals of 12 h or longer or at ad hoc intervals from aircraft overflights. This is particularly relevant when a fire spreads rapidly, such as at maximum hourly spread rates of over 5 km h−1. Our GOFER algorithm for deriving the hourly fire progression using GOES can be applied to large wildfires across North and South America and reveals considerable variability in the rates of fire spread on diurnal timescales. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates. The resulting GOFER product has a broad set of potential applications, including the development of predictive models for fire spread and the improvement of atmospheric transport models for surface smoke estimates (https://doi.org/10.5281/zenodo.8327264, Liu et al., 2023).more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
